New Developments on the Recoil-Distance Doppler-Shift Method

C. Fransen, A. Dewald, A. Blazhev, T. Braunroth, M. Hackstein, J. Jolie, T. Pissulla, W. Rother

Institute for Nuclear Physics University of Cologne, Germany

AGATA Physics Workshop 2010, Istanbul, Turkey

Outline

- Fusion, direct reaction or Coulex with radioactive beams in inverse kinematics: lifetimes determination with RDDS
- RDDS after Coulex in inverse kinematics: example ¹²⁸Xe
- The new Cologne plunger for radioactive ion beams
- Recent experiments at NSCL
- Outlook: planned experiments at GSI, Darmstadt

The recoil distance Doppler-shift method (RDDS)

Deorientation

Hyperfine interaction: Original spin alignment diminished as function of interaction time

Decay described by attenuation function

 $\omega(d) = 1 + p e^{-d/T_D}$

T_D relaxation time After projectile leaves foil, angular distribution decays into isotropy

Intensities of fast and slow components:

 $\dot{R}_i^{s,f} = \omega(d) \dot{R}_i^{s,f}$

Integrate from 0 to d (target – degrader) for (f) and

from d to infinity (behind degrader) for (s)

A new plunger device for radioactive beams at NSCL, MSU

target/ degrader diameter: 4 cm target/ degrader separations: 0-2,5 cm precision : ~ 1 μ m target/ degrader thickness: ~ 1 μ m -1mm

Plunger for radioactive ion beams: NSCL coupled cyclotron facility + A1900; MSU

Plunger lifetime measurements using secondary knock-out reactions or coulomb excitation

Knock-out reaction

Investigation of the N=Z nucleus ⁶⁴Ge (and ⁶²Zn) at NSCL

K. Starosta et al, Phys. Rev. Lett. 99, 042503 (2007)

beam: ~5% 65Ge, ~25% 64Ga, ~70% 63Zn, ~2% 62Cu

E~100 MeV/u E'~90 MeV/u E"~60 MeV/u

Knockout or fragmentation: access of states beyond the 2^{+}_{1} relativistic Coulex: practically only 2^{+}_{1}

Analysis using decay function and lineshape

 ^{62}Zn : (2+ \rightarrow 0+) transition measured at different target – degrader separations

- Stopping power fixed by using velocities measured after the target and after the degrader
- Relativistic effects were considered
- Parameter: degrader excitation (40%) width of the velocity distribution
- Free parameter: lifetime, normalisation factor

90% of intensity of 2⁺₁ decay in
⁶²Zn from fast feeding.
Knockout reaction excellent tool for lifetime measurements!

Plunger technique at intermediate-energy for ¹¹⁰Pd and ¹¹⁴Pd with coulex

Investigation of n-rich Fe isotopes @ NSCL, MSU

RDDS after Coulex in inverse kinematics

A	Beta	Energy [MeV/u]	pps	Au –Target	Nb-Degrader	
62	0.43	100	36k	0.3 mm	0.3 mm	
64	0.42	95	6k	0.3 mm	0.4 mm	
66	0.40	85	1k	0.3 mm	0.3 mm	

Example: lineshape analysis ⁶⁶Fe

$B(E2,2_1^+ \rightarrow 0_1^+)$ systematics for Fe isotopes

Wolfram Rother, IKP Cologne

Plunger at GSI: PRESPEC/LYCCA -> HISPEC

Plunger for radioactive beam experiments @ MSU

Required for GSI plunger:

- larger target/degrader diameter 70 80 mm ✓
- larger beam pipe diameter 6" = 152.4 mm ✓
- two piezo motors necessary \checkmark
- less material in front of target (beam halo) X

A dedicated plunger for deep inelastic reactions: PRISMA @ LNL, VAMOS @ GANIL

Modifications for use at PRESPEC:

- Construction not stable enough for large (\emptyset = ~80 mm) and heavy targets (~1 g/cm²)
 - fundamental changes to mechanics needed.
- two inchworm motors necessary
- large target chamber needed.

Advantage of construction: nearly no material in front of target

Outlook: Investigation of neutron rich Cd isotopes at GSI with RDDS and the new AGATA array at PRESPEC

1. Commissioning experiment on ¹²²Cd with new Cologne differential plunger

Aim: application of Cologne differential plunger for lifetime measurements at HISPEC/PRESPEC with Coulex in inverse kinematics

Measure B(E2,0₁⁺ -> 2₁⁺) in ¹²²Cd:

Determine from lifetimes measured with plunger Compare to $B(E2,2_1^+ \rightarrow 0_1^+)$ from Coulex

to the γ -ray detector

Lifetime τ [ps]	14.4	
Doppler-shiftet γ -ray energy after plunger-target at 15° [keV]		
PRESPEC γ -ray energy resolution [%]		
Averaged cross section for Coulex in target [mb]		
Cross section for Coulex in degrader [mb]		
Number of detected good PRESPEC-LYCCA coincidences/h		
Shifts per single target-degrader data point		
Estimated number of shifts		

Approved parasitic experiment 21 parasitic shifts (Spring 2011)

Outlook: Investigation of neutron rich Cd isotopes at GSI with RDDS and the new AGATA array at PRESPEC

2. Letter of Intent: measurement of B(E2) in^{124,126}Cd in inverse kinematics Coulex with differential plunger

 $1.5 \qquad - 48 \ - 60 \ - 56 \ - 60 \ - 56 \ - 58 \ -$

- Investigate collectivity when approaching N=82
- B(E2,2₁⁺ -> 0₁⁺) related to nuclear quadrupole deformation
- Milestone in understanding properties of these nuclei
- Anomalous behavior of 21⁺ in n-rich Cd

Need precise data on $B(E2,2_1^+ \rightarrow 0_1^+)$

Conclusion

Differential plunger is a very profitable instrument for lifetime measurements in inverse kinematics:

- New results on stable ¹²⁸Xe from JYFL
- Examples for measurements with radioactive ion beams at NSCL/MSU
- Outlook: Experiments planned at FRS/GSI with radioactive beams and AGATA

Collaboration:

Institut für Kernphysik, Universität zu Köln

C. Fransen, A. Dewald, M. Hackstein, W. Rother, T. Pissulla, J. Jolie, K. O. Zell

Michigan State University/NSCL

K. Starosta, A. Chester, P. Adrich, D. Bazin, M. Bowen, A. Gade, T. Glasmacher, D. Miller, V. Moeller, A. Stolz, C. Vaman, P. Voss, D. Weisshaar

INRNE, Bulgaria

P. Petkov

GSI, Darmstadt, Germany

M. Gorska and the PRESPEC Collaboration

Athens, Greece

S. Harrisoupulos, T. Konstaninopulos

Example: experiment on ¹²⁸Xe at Jyväskylä

- ¹²⁸Xe candidate for E(5) critical point in transition from vibrator to gamma-soft
- Experiment performed in Coulex in inverse kinematics with differential plunger
- Experimental method, data analysis, setup

A New Application of the Recoil Distance Method Probing Exotic, Particle-Decay Isotopes

P. Voss^{1,2}, P. Adrich¹, T. Baumann¹, D. Bazin¹, A. Dewald³, D. Enderich^{1,2}, H. Iwasaki³, D. Miller^{1,2}, R. P. Norris^{1,2}, S. Progovac^{1,2}, A. Ratkiewicz^{1,2}, A. Spyrou¹, K. Starosta^{1,2}, M. Thoennessen^{1,2}, C. Vaman¹ NSCL/MSU ; IKP Köln

Plunger with a 500µm carbon target and a double sided, 16x16 strip, 300µm silicon detector on a ceramic mount from Micron Semiconductor.

Table 1: Experimental deta	lils		Table 2: Continuation of Tab. 1					
	$^{122}\mathrm{Cd}$	$^{124}\mathrm{Cd}$	$^{126}\mathrm{Cd}$	-	$^{122}\mathrm{Cd}$	$^{124}\mathrm{Cd}$	$^{126}\mathrm{Cd}$	
Primary beam	$^{136}\mathrm{Xe}$	$^{136}\mathrm{Xe}$	$^{136}\mathrm{Xe}$	Averaged cross section for Coulex in target [mb]	300	300	400	
Energy [MeV/u]	700	675	675	Number of Coulomb excitations on target $[1/s]$	1.19	0.24	0.14	
Intensity [pps]	$1\cdot 10^9$	$1\cdot 10^9$	$1\cdot 10^9$	Cross section for Coulex on degrader [mb]	140	140	140	
⁹ Be target $[mg/cm^2]$	1622	1622	1622	Number of excitations on degrader $[1/s]$	0.15	0.05	0.008	
S1 wedge Al $[mg/cm^2]$	2000	_	_	Photopeak efficiency for three rings of				
S2 wedge Al $[mg/cm^2]$	5000	6400	5500	PRESPEC at forward angles $[\%]$	4	4	4	
Secondary beam	$^{122}\mathrm{Cd}$	$^{124}\mathrm{Cd}$	^{126}Cd					
Purity [%]	93	93	90	Number of detected good PRESPEC-LYCCA				
S2 intensity	$9.80\cdot 10^4$	$4.50\cdot 10^4$	$1.30\cdot 10^{5}$	coincidences [1/s]	0.0477	0.0096	0.0056	
v				Number of detected good PRESPEC-LYCCA				
Transmission through FRS for nucleus of interest	15.86%	22.09%	23.98%	coincidences per hour	172	35	20	
Beamspot size at plunger-target X-plane [mm]	± 20	± 20	± 15	Number of shifts per single target-degrader				
Incoming beam energy on plunger-target [MeV/u]	220	220	280	data point	1	3	6	
Incoming velocity on plunger-target [c]	0.59	0.59	0.64	Estimated number of shifts to complete				
Total/ 12X Cd incoming beam intensity				the measurement	3	9	18	
on plunger target [pps]	770/727	230/209	34/31					
Number of particles registered by LYCCA [pps]	700/651	$\frac{200}{186}$	$\frac{30}{27}$					
Thickness Au plunger target $[g/cm^2]$	2.0	2.0	3.5					
Outgoing beam energy plunger target [MeV/u]	120	120	130					
Outgoing velocity plunger target [c]	0.464	0.464	0.480					
Thickness plunger-degrader (Nb) [µm]	300	300	300					
Outgoing beam energy plunger-degrader [MeV/u]	100	100	110					
Outgoing beam velocity plunger-degrader [c]	0.430	0.430	0.447					
Change in beam velocity target-degrader [c]	0.034	0.034	0.033					
enange in seam verserig target degrader [e]	0.001	0.001	0.000					
State of interest	2_{1}^{+}	2_{1}^{+}	2_{1}^{+}					
Transition of interest	$2^+_1 \rightarrow 0^+_1$	$2^+_1 \rightarrow 0^+_1$	$2^+_1 \rightarrow 0^+_1$					
γ -ray energy of interest [keV]	$56\overline{2}$	612	652					
Assumed lifetime τ [ps]	14.4	16.4	16.4					
Flight-path corresponding to τ [mm]	2.1	2.4	2.4					
Doppler-shiftet γ -ray energy of interest								
after plunger-target at 30° [keV]	843.4	907.5	979.0					
Doppler-shiftet γ -ray energy of interest								
after plunger-target at 15° [keV]	914.2	983.7	1066.5					
Doppler-shiftet γ -ray energy of interest								
after plunger-degrader at 30° [keV]	819.2	881.5	951.6					
Doppler-shiftet γ -ray energy of interest								
after plunger-degrader at 15° [keV]	879.4	946.4	1026.4					
Change in Doppler-shifted energy at 30° [keV]	24.2	26.0	26.6					
Change in Doppler-shifted energy at 15° [keV]	34.8	37.4	40.1					
PRESPEC γ -ray energy resolution [%]	4	4	4					

114Pd : $(2 + \rightarrow 0 +)$ transition measured at different target – degrader separations

Motivation

Present nuclear physics: focus on nuclei far from stability

Plunger@Jyväskylä

The recoil distance Doppler-shift method (RDDS)

 $I^{\rm sh} =$ Intensity of the Doppler-shifted component

⁹²Mo(¹⁰B,3np)⁹⁸Pd

Gamma-ray singles gated on target recoils @ 30µm

¹²⁸Xe E(5) ?

Plunger + SEGA @ S800

B(E2)-Systematics for Pd Isotopes and Neighbours: old

Old data: strong deviation of neutron rich Pd isotopes from Grodzins rule

Grodzins rule: $E(2^+) \cdot B(E2, 2^+ \to 0^+_1) = \frac{Z^2}{A}(24.6 \pm 8.2) \text{MeVe}^2 \text{fm}^4$

IBM-2 calculations **(Experiment**

